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Quality control of iron ore grades is an important part of the iron making process. Fast and accurate analysis 
techniques must be established to identify and classify the chemical property and composition of iron ore grade 
in the integrated steel plant. The aim of this work is to develop laser-induced breakdown spectroscopy (LIBS) 
assisted chemometric methods for fast classification and identification of iron ores. Five types of iron ore stand-
ards were selected and their LIBS spectra were recorded for chemometrics investigation. In addition, nine 
feature lines were extracted from the LIBS spectra of iron ore by using principal component analysis (PCA). 
Partial least squares discriminant analysis (PLS-DA) was then introduced to establish a discrimination model 
for classifying the five types of iron ores based on the nine feature lines, and showed the correct discrimination 
rates of 83.3%. Finally, the model was applied to discriminate three types of iron ores from stockpiles in China 
Steel Corporation (CSC) and showed the great potential for identification and classification. The research revealed 
that LIBS technology assisted with chemometrics will provide a fast method for quality control of iron ore. 
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1. INTRODUCTION 

Laser-induced breakdown spectroscopy (LIBS) is a 
promising atomic emission spectroscopic technique(1), 
especially in green chemistry analysis. Briefly, a focused 
laser pulse strikes the sample surface and creates a ball 
of microplasma. Then, the plasma cooled and emitted 
unique spectral light peaks that can be used as spectral 
features to identify the element in the sample. It has 
many advantages for sample analysis, including (1) 
adaptable for all types of samples, such as solids, liquids, 
and gases, (2) reduced sample preparation procedure, (3) 
simultaneous multi-element analysis, (4) in situ remote 
analysis. It also has broad applicability for many fields, 
such as mineral selection(2-4), aerospace exploration(1),  
industrial analysis(5-7), and environmental monitoring(3,8-10). 

Iron ore is an important raw material in the metal-
lurgical industry. Iron ore grades mostly depends on the 
content of iron and minor impurities, such as silica,  
alumina, and phosphorus. In addition, high grade iron 
ores helps to maximize the blast furnace yield and even 
decrease the defects in end-products(11). Therefore, the 
identification and classification of iron ore is the most 
important step in quality control. In general, the element 
content of iron ore should be identified in both qualita-
tive and quantitative methods12. However, it is time-con-
suming and requires complicated sample preparation. In 

order to rapidly classify the iron ore grades, the LIBS 
technique can be adapted to provide feedback of quality 
information of the process in real time. 

Due to LIBS being a powerful spectroscopic tech-
nique, it provides several thousands to tens of thousands 
of element-related variables per spectrum. Recently, 
LIBS spectroscopy coupled with chemometrics has 
shown great potential in reducing high dimensional data 
to a lower dimensional factor(13). There are several 
chemometric approaches that had been applied to LIBS 
spectral analysis and classification. For example, partial 
least squares discriminant analysis (PLS-DA) has been 
used for classifying rocks(14), soils(14), coffee(15), and  
explosives(16) based on LIBS spectra. In addition, soft in-
dependent modeling of class analogy (SIMCA) has also 
been used to differentiate between bacterial spores(17), 
molds(17), and nerve agent simulants(18). In addition, 
PLS-DA has been shown to offer the best classification 
results compared to PCA and SIMCA, because PLS-DA 
can maximize the inter-class variance while minimize 
the intra-class variance(19). 

In this study, we developed a discrimination model 
based on LIBS technique coupled with a chemometric 
method for identification and classification of iron ores. 
The chemometric methods of PCA and PLS-DA were 
both introduced to conduct the LIBS feature extraction 
and discrimination analysis. Therefore, the selected  
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feature spectral lines were verified. 

2. EXPERIMENTAL METHOD 

2.1 Experimental device and LIBS data acquisition 

The measurements were performed by using a J200 
LIBS instrument (Applied Spectra, USA) equipped with 
a pulsed Nd:YAG laser, an optical microscope, a 6-chan-
nel CCD spectrometer, an adjustable X-Y-Z moving 
stage, and a personal computer with a laser operating 
system software and Clarity LIBS software for quantita-
tive analysis.  

All of the experiments were carried out in an air  
environment. The focused sample area was irradiated by 
pulsed laser with a repetition frequency of 10 Hz, energy 
of 12 mJ, and wavelength of 266 nm. After the irradia-
tion, the light emitted from the sample micro-plasma 
was collected and the spectrum at wavelengths of 200-
850 nm was recorded by a 6-channel spectrometer cou-
pled with CCD camera. The delay generator provided a 
proper delay time to eliminate the initial continuum 
emission. For all measurements, the gate width and   
exposure time of the CCD were set to 1.050 ms and 1 μs, 
respectively.  

Each spectrum was collected by an accumulation of 
23 laser pulses per site to increase the signal-to-noise ra-
tio (SNR). Each sample was analyzed by 60 different 
sites (60 spectra were obtained). Furthermore, 60 LIBS 
spectra were recorded from each type. Thus, a total of 
300 LIBS spectra were gathered from five types of iron 
ore standards.  

2.2 Iron ore samples 

Five types of iron ore standards were used in this 
study: SRM 692 (NIST, USA), JSS-800-3 (ISIJ, Japan), 
BAM 678-1(BAM, Germany), CECA 677-1 (EURONORM-
CRM, EU), and ECRM 681-1(BAS, UK). Three types of 
iron ores from China Steel Corporation (CSC): RH.F, 
Caraja.F, and HY.F. The certified elemental compositions 
of the main oxide materials in standard samples are pre-
sented in Table 1.  

To obtain the homogenous and compact surface of 
the iron ore for laser ablation, 3g iron ore powder was 
blended with 5% PVB solution and then made into the 
cylindrical pellets (Ø= 32mm) through automatic hydrau-
lic press (Atlas Autotouch, Specac, UK) with sufficient 
pressure (12T) lasting 30 seconds. 

2.3 Chemometric Methods 

Principal component analysis (PCA) is an unsuper-
vised multivariate method that extracts useful infor-
mation and describes major trends by finding new com-
binations of variables of the data set. When the intensity 
of a series of emission lines is used as an input variable, 
the new variable generated by PCA analysis can be 
named as principal components and ranked according to 
the explained variances. For example, the first principal 
component (PC1) explained most of the variances, and 
followed by the second PC, the third PC, and so on. Be-
sides, the score and loading plot based on different com-
ponents are also used to indicate the group distribution 
of sample set and the variable effect on each component, 
respectively. 

Partial least squares-discriminant analysis (PLS-
DA) is a discrimination method based on partial least 
squares regression (PLSR). PLSR is applied to explore 
the linear relationship between the variables of the spec-
tral data and the corresponding features, such as chemi-
cal content. The new orthogonal variables called latent 
variables (LVs) are selected to maximize the covariance. 
When PLS-DA is conducting the regression procedure, 
the prediction value of PLS-DA was a real number. 
Thus, a threshold value should be set to determine which 
category it belongs to. In this study, the threshold value 
was set to 0.5. 

3. RESULTS AND DISCUSSION 

3.1 Overview of iron ore LIBS spectra 

In this study, five iron ore standards of SRM 692, 
JSS-800-3, BAM 678-1, CECA 677-1, and ECRM 681-

 
Table 1 Certified element composition of five iron ore standards (wt%). 

Sample name 
Composition wt% 

T.Fe SiO2 CaO MgO Al2O3 TiO2 Na2O K2O MnO 

SRM 692 59.58 10.14 0.02 0.04 1.41 0.05 0.01 0.04 0.46 

JSS-800-3 62.85 2.60 0.02 0.22 2.01 0.08 -- -- 0.28 

ECRM 681-1 33.21 17.80 3.92 1.48 10.62 0.48 0.09 0.59 0.28 

BAM 678-1 60.75 3.70 5.48 0.95 0.53 0.22 0.15 0.13 0.10 

CECA 677-1 51.54 25.19 0.05 0.02 0.60 0.02 0.01 0.01 0.02 
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1 were selected as five different classes. The LIBS spec-
tra of these standards were recorded for setting the   
parameter of classification. As shown in Figure 1, the 
five LIBS spectra in the range of 200−850 nm had simi-
lar profiles except for the spectral intensity. The main 
spectral lines were located around the region of 240−440 
nm and 480−560 nm. There were obvious peaks around 
590 nm and 770 nm.  

Because the iron ores possess the homologous  
matrix of chemical and elemental composition, they  
exhibited the similar LIBS spectra curves. In order to  
analyze information of the LIBS spectral lines, NIST 
Atomic spectra database were utilized to identify and  
label the majority of the emission lines of the spectra. A 
typical spectrum of JSS-800-3 was shown in Figure 2, 
which revealed the characteristics of emission spectral 
lines of Fe located in a broad range of 360-440 nm wave-
length. A number of emission lines with different LIBS 
intensity were also observed to contain the information 
of Al, Ca, Si, Na, Ti, K elements.  

3.2 Principal components analysis on LIBS data 

In order to classify the iron ore standards, it is nec-
essary to extract the LIBS spectral features of these five 

standards for multivariate analysis. First, PCA analysis 
was employed to transform the full spectra into several 
principal components (PCs). From the loading plot of 
the PCA analysis, most of the emission lines of the main 
elements in each spectrum have large load coefficients. 
Then, we selected nine emission lines with high signal-
to-noise ratio from the LIBS spectra, which were labeled 
as Si I 288.16 nm, Ti II 328.77 nm, Ca II 393.37 nm,  
Al I 394.40 nm, Mn I 423.51 nm, Fe I 438.35 nm, Mg I 
518.36 nm, Na I 588.99 nm, and K I 766.49 nm (I: 
atomic spectral lines and II: ionic spectral lines). There-
fore, the labeled emission lines represented the LIBS 
feature lines of Si, Al, Fe, Mg, Na, Ca, K, Ti, and Mn of 
each iron ore standard class. Thus, a matrix with 300 9 
(LIBS spectra lines) was obtained for further analysis. 
Another PCA analysis was executed with the nine fea-
ture lines of each LIBS spectral data to display any var-
iation among the five standards. The score plot of the 
first two PCs shown in Figure 3(a) exhibited an apparent 
clustering of each iron ore class. The first two PCs   
explained 87% (PC1:58.5 %, PC2:28.5 %) of the varia-
tions among total spectral information. In addition, the 
loading plot of PCA also revealed the importance of the 
analyzed variables. As shown in Figure 3(b), there were 

 

Fig.1. Representative LIBS spectra of the iron ore standards, (a) JSS-800-3, (b) ECRM 681-1, (c) BAM 678-1, (d) SRM 692, 
(e) CECA 677-1. 
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six variables of Ca, Mg, Na, Ti, Fe, and Mn, which 
showed the similar contribution on PC1. The variables 
of Al, Si, K showed the dominating contribution on PC2. 
For fully explaining the score plot, Table 1 was con-
ducted to analyze the scatter distribution of the five clas-
ses of iron ores. The BAM 678-1 class with relatively 
high concentration of Fe, Ca, Na and low concentration 
of Al was located in the positive side of PC1 and the 
negative side of PC2. On the contrary, the ECRM 681-1 
class with a low concentration of Fe and relatively high 
concentration of Al, Si, K was located in the negative 
side of PC1 and the positive side of PC2. In addition, the 
three classes of SRM 692, JSS-800-3 and CECA 677-1 
with relatively low concentration of Ca compared with 
ECRM 681-1 and BAM 678-1 class were both located 
in the negative side of PC1 and PC2. 

3.3 PLS-DA Classification Model 

Despite the PCA analysis being able to identify the 
differences of iron ores, PLS-DA based chemometric 
method was further employed to discriminate the classes 
of iron ore. Prior to build PLS-DA classification model 
with the variables from the 9 feature lines, the labeled 
classes corresponding to each spectrum were divided 
into calibration sets and prediction sets which contained 
30 LIBS spectra, respectively. As shown in Table 2, the 
prediction accuracy of the PLS-DA model was 83.3% of 
SRM 692, JSS-800-3, BAM 678-1, CECA 677-1, and 
ECRM 681-1, with 7 LVs. The results indicated the fea-
sibility of identifying the varieties of iron ore by using 
the feature lines that correspond to the elements. Further-
more, in order to verify the accuracy and reliability of 
the PLS-DA classification model, we collected 3 types 
of iron ores from CSC stockpiles, RH.F, Caraja. F, and 
HY.F, and performed the discriminant analysis. The   
results are shown in Table 3 and the prediction accuracy 

 

Fig.2. The main emission lines in LIBS spectrum of JSS-800-3. (I: atomic spectral lines and II: ionic spectral lines) 
 

  

Fig.3. The score plot (a) and loading diagram (b) of first two PCs from PCA on LIBS spectra with the selected emission lines 
of five iron ore standards. 
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was 100% of all the CSC iron samples. Thus, it could be 
concluded that there was an obvious differentiation in 3 
types of CSC iron ores and the selected 9 feature lines 
were valid to distinguish the different iron ores. 

4. CONCLUSIONS 

Quality control of iron ore grades is an important 
part of the iron making process in the metallurgical in-
dustry. This study establishes a LIBS based chemomet-
rics method for the identification and classification of 
iron ore samples. PCA and PLS-DA are both conducted 
to process the related variables of LIBS spectra for clas-
sification and prediction of five iron ore standards. In or-
der to simplify the discrimination model, the full spectra 
of the iron ore standards are analyzed by PCA and 9 fea-
ture lines are extracted (Si I 288.16 nm, Ti II 328.77 nm, 
Ca II 393.37 nm, Al I 394.40 nm, Mn I 423.51 nm, Fe I 
438.35 nm, Mg I 518.36 nm, Na I 588.99 nm, and K I 
766.49 nm) for further analysis. Then, a PLS-DA dis-
crimination model of iron ores is well established with 
the 9 feature lines as the input variable for classification. 
Moreover, the PLS-DA model is further used to identify 
the other 3 iron ore samples from CSC stockpiles, which 
verified the feasibility of applying the model to classify 
the iron ore in the metallurgical industry.  
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